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WR-217e Architecture Design 

The first step of architecture design, especially when given a more-or-less blank slate, is to create an 

architecture development model. It is better to make one architecture development model that only 

uses high level car parameters (e.g. a lap time simulator) and then make a few more specific models 

(e.g. step steer torque vectoring response, quarter-car suspension model, etc), rather than to try to 

incorporate all of the models together. When starting to make a model, ask yourself: “What am I trying 

to get out of this model?” or “What will I be using this model to optimize?” From there, start simple and 

add complexity to the model as needed in order to achieve your goals. 

These are the goals for the architecture development model that will be outlined in this document: 

Goals 

• Determine the optimal power source characteristics required to achieve high level performance 

targets* (e.g. peak torque, peak power, torque curve shapes) 

• Determine optimal transmission ratio(s) to achieve high level performance targets 

• Determine required onboard energy to achieve the desired vehicle range 

• Determine aerodynamic properties that result in the optimal tradeoff between performance 

and efficiency 

• Determine optimal high level chassis parameters (e.g. vehicle CG location) 

*note: High level performance targets can include metrics such as peak acceleration and top speed. 

These are chosen at the architecture engineer’s discretion, and may need to be revised later as physical 

constraints are realized (e.g. packaging, vehicle mass, etc). 

Now, we can identify the vehicle parameters we will need to include in our model: 

Propulsion 

• Torque-speed curve for the vehicle power source 

• Number of gears and corresponding transmission ratios (𝑁1 , 𝑁2 … 𝑁𝑛) 

• Torque-speed efficiency map for power source (optional) 

Chassis 

• Total vehicle mass w/ driver (𝑚) 

• Height of the center of gravity (𝐶𝐺𝑧) 

• Wheelbase and track width(s) (𝑤𝑏, 𝑡𝑤𝑓 , 𝑡𝑤𝑟)  

• Static weight distribution (𝑠𝑤𝑑) (from 0 to 1, higher is 

more rearward) 

Tires 

• Estimate of tire rolling radius (𝑟𝑡𝑖𝑟𝑒)  

• Estimate of maximum longitudinal coefficient of friction (𝜇𝑙𝑜𝑛𝑔) 

• Estimate of maximum lateral coefficient of friction (𝜇𝑙𝑎𝑡) 

• Sensitivity of coefficient of friction to normal load (optional) 



Aerodynamics 

• Coefficient of downforce (𝐶𝑑𝑓) 

• Coefficient of drag (𝐶𝑑) 

• Frontal area (𝐴𝑓) (area of the vehicle from a front view) 

• Center of pressure (𝑐𝑝) (from 0 to 1, higher is more rearward) 

• Air density (𝜌) 

Notice what is missing:  

• Suspension geometry 

• Spring rates, damping rates 

• 26 DOF Pacejka tire model 

• KNC compliance data 

This is on purpose! We don’t need any of that information to achieve our goals. Notice that all of the 

parameters of the car that we are trying to optimize are included as input parameters for our model. 

Because of this, we will need to make some educated guesses for our initial inputs. These guesses will be 

driven by a combination of data from older vehicles and first principles. 

The vehicle coordinate system 

 

Steps to build your model: 

Step 1: Point-mass acceleration event 

Step 2: Bicycle model acceleration event 

Step 3: Two-track model autocross event 

  



Step 1: Part A – The Point Mass 

To build your model, start with a point mass that accelerates in one dimension. We will call this type of 

model a 1-DOF traction limit acceleration model, because we will calculate the “traction limit” based on 

the given longitudinal coefficient of friction between the point mass and the ground. In this model, it is 

assumed some propulsion system is capable of fully utilizing the available friction force at the contact 

patch to accelerate the vehicle in all conditions. 

 

Inputs: 

• Mass of the point [kg] 

• Coefficient of friction [-] 

Equations: 

1) Kinematic relationships using the symplectic (semi-implicit) Euler approximation: 

• 𝑣𝑖 = 𝑣𝑖−1 + 𝑎𝑖−1𝑑𝑡 

• 𝑥𝑖 = 𝑥𝑖−1 + 𝑣𝑖𝑑𝑡 

2) 𝐹𝑛𝑒𝑡 = 𝑚𝑎 

3) 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =  𝜇𝐹𝑁 

Calculations: 

𝐹𝑛𝑒𝑡 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

𝑚𝑎 =  𝜇𝑙𝑜𝑛𝑔𝐹𝑁 

𝐹𝑁 = 𝑚𝑔 

𝑎 =  𝜇𝑙𝑜𝑛𝑔𝑔 



Mass cancels out in this first case, but is included in the model as we will need it later on. When you run 

your simulation, you should be able to plot acceleration, velocity, and position vs. time. You should be 

able to see a linearly increasing velocity and a quadratically increasing position. 

For this first model and as we move forward, I will walk you through how to calculate the accelerations 

of the vehicle. It is up to you to create a numerical (discrete time-step) model to calculate vehicle 

velocity and position. 

 

Q: How do I decide on what increment to make 𝑑𝑡? 

A: It entirely depends on the time constants of different phenomena in your dynamic system. For this 

application, I recommend 𝑑𝑡 = 0.001. As 𝑑𝑡 → 0, the behavior of your numerical model will 

asymptotically approach the exact solution, as shown in the plot of an arbitrary function below. 

  

 

 

 

  



Step 1: Part B – Aerodynamic Effects 

We will now add some aerodynamic parameters to our point-mass acceleration event. 

Additional Inputs:  

• Coefficient of downforce [-] 

• Coefficient of drag [-] 

• Air density [kg/m3] 

Additional Equations: 

1) 𝐹𝑑𝑜𝑤𝑛𝑓𝑜𝑟𝑐𝑒 =
1

2
𝜌𝐴𝑓𝐶𝑑𝑓𝑣2 

2) 𝐹𝑑𝑟𝑎𝑔 =  
1

2
𝜌𝐴𝑓𝐶𝑑𝑣2 

Calculations 

𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 − 𝐹𝑑𝑟𝑎𝑔 = 𝐹𝑛𝑒𝑡  

𝐹𝑁 = 𝑚𝑔 + 𝐹𝑑𝑜𝑤𝑛𝑓𝑜𝑟𝑐𝑒 

𝜇𝑙𝑜𝑛𝑔 (𝑚𝑔 +
1

2
𝜌𝐴𝑓𝐶𝑑𝑓𝑣𝑖−1

2 ) − (
1

2
𝜌𝐴𝑓𝐶𝑑𝑣𝑖−1

2 ) = 𝑚𝑎 

𝑎 =  𝜇𝑙𝑜𝑛𝑔𝑔 +

1
2 𝜌𝐴𝑓(𝜇𝑙𝑜𝑛𝑔𝐶𝑑𝑓 − 𝐶𝑑)𝑣𝑖−1

2

𝑚
 

Now, mass no longer cancels out. Acceleration still has the 𝜇𝑙𝑜𝑛𝑔𝑔 component from Part A, but now also 

has an additional component due to combined aerodynamic effects. Even from this simple model, it can 

be seen that the aerodynamic effects will impact vehicle acceleration more as the vehicle mass is 

decreased. We also find that when 𝜇𝑙𝑜𝑛𝑔𝐶𝑑𝑓 >  𝐶𝑑, the net effect of aerodynamics will increase 

acceleration. This is not necessarily true once a more complex model is developed, but still interesting to 

note here. This is because in reality vehicles usually do not ride the traction limit all the way to top speed 

due to the incredible power required to do so. When the vehicle become power limited (no longer 

traction limited), downforce is no longer increasing the vehicle’s ability to accelerate, but drag is still 

decreasing the vehicle’s ability to accelerate. From this, we can conclude that given the above condition 

is satisfied, the net effect of aerodynamics is positive when the vehicle is traction limited, and negative 

when the vehicle is power limited.  

Note: since acceleration is now velocity-dependent, we use the velocity from the previous time step as an 

approximation for the velocity at the current time step. 

  



Step 1: Part C – The Propulsion System 

In this part, we will add a defined propulsion system to our model. For example purposes, we will keep 

our propulsion system simple: an electric motor that can be characterized by a peak torque, peak power 

and a fixed gear ratio. Now, instead of our point-mass vehicle accelerating at the limit of traction, we 

will compare the capability of the motor to the traction limit and use the smaller of these forces to 

accelerate the point mass. This is, in effect, a rudimentary “traction control” system.  

 

Additional Inputs: 

• Motor peak torque (N-m) (𝑇𝑚𝑎𝑥) 

• Motor peak power (W)  (𝑃𝑚𝑎𝑥) 

• Transmission ratio [-] (𝑁) 

Additional Equations: 

1) 𝐹𝑚𝑜𝑡𝑜𝑟 = min (
𝑇max∗𝑁 

𝑟𝑡𝑖𝑟𝑒
,

𝑃𝑚𝑎𝑥

𝑣𝑖−1
) 

2) 𝐹𝑐𝑝 = min(𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 , 𝐹𝑚𝑜𝑡𝑜𝑟)  

(force at the contact patch of the tire) 

 

Calculations: 

𝐹𝑐𝑝 − 𝐹𝑑𝑟𝑎𝑔 = 𝐹𝑛𝑒𝑡 

𝐹𝑁 = 𝑚𝑔 + 𝐹𝑑𝑜𝑤𝑛𝑓𝑜𝑟𝑐𝑒 

𝐹𝑐𝑝 − 𝐹𝑑𝑟𝑎𝑔 = 𝑚𝑎 

𝑎 =
𝐹𝑐𝑝 − 𝐹𝑑𝑟𝑎𝑔

𝑚
 

  



Step 2: The Bicycle Model 

In this part, we turn our point mass into a two-wheeled bicycle. We will need to make a couple 

adjustments to our equations to accommodate this, mainly by introducing the concept of weight 

transfer (or, more correctly and specifically, longitudinal load transfer). 

When a force is applied at the bottom of an object with a center of gravity some distance above the 

ground, a moment is applied about the CG. The result of this moment on an object like a bicycle (with 

two points in contact with the ground and therefore two separate normal forces) is that some of the 

normal load from the front tire is transferred to the rear tire during acceleration (and vice versa during 

braking). By doing a moment balance about one of the tires, this load transfer can be described: 

𝑊𝑇𝑙𝑜𝑛𝑔 = 𝑚𝑎𝑙𝑜𝑛𝑔 ∗
𝐶𝐺𝑍

(𝑤𝑏)
 

The magnitude of this load transfer will be added or removed from each tire depending on the direction 

of acceleration. We will now begin distinguishing accelerations and weight transfers as longitudinal (in 

the direction of the bicycle’s travel), and eventually when we get to the two track model as lateral (in 

the direction pointing from the vehicle to the center of a turn). We will now also have separate 

equations for the front tire and the rear tire. For this example, we will assume there is a motor for each 

tire as well. 

Additional Inputs: 

• Static weight distribution  (𝑠𝑤𝑑)  

• Wheelbase of the bicycle (𝑤𝑏)  

• Height of the center of gravity of the bicycle (𝐶𝐺𝑧) 

• Center of pressure (𝑐𝑝) 

Additional Equations: 

1) 𝑊𝑇𝑙𝑜𝑛𝑔 = 𝑚𝑎𝑙𝑜𝑛𝑔 ∗
𝐶𝐺𝑍

(𝑤𝑏)
 

2) 𝐹𝑁,𝑓𝑟𝑜𝑛𝑡 = 𝑚𝑔 ∗ (1 − 𝑠𝑤𝑑) + 𝐹𝑑𝑜𝑤𝑛𝑓𝑜𝑟𝑐𝑒 ∗ (1 − 𝑐𝑝) − 𝑊𝑇𝑙𝑜𝑛𝑔  

3) 𝐹𝑁,𝑟𝑒𝑎𝑟 = 𝑚𝑔 ∗ (𝑠𝑤𝑑) + 𝐹𝑑𝑜𝑤𝑛𝑓𝑜𝑟𝑐𝑒 ∗ (𝑐𝑝) + 𝑊𝑇𝑙𝑜𝑛𝑔  

Calculations 

𝐹𝑐𝑝,𝑓𝑟𝑜𝑛𝑡 + 𝐹𝑐𝑝,𝑟𝑒𝑎𝑟 − 𝐹𝑑𝑟𝑎𝑔 = 𝐹𝑛𝑒𝑡 

For the sake of space, we solve more generally: 

𝐹𝑐𝑝,𝑓𝑟𝑜𝑛𝑡 + 𝐹𝑐𝑝,𝑟𝑒𝑎𝑟 − 𝐹𝑑𝑟𝑎𝑔 = 𝑚𝑎 

𝑎 =
𝐹𝑐𝑝,𝑓𝑟𝑜𝑛𝑡 + 𝐹𝑐𝑝,𝑟𝑒𝑎𝑟 − 𝐹𝑑𝑟𝑎𝑔

𝑚
 

  



If the front and rear wheels are both traction limited, acceleration actually reduces to the same formula 

in Step 1 – Part B. However, when a wheel is power limited (i.e. the motor cannot fully utilize the 

available grip), non-linearities are introduced into our model. Now, we have longitudinal acceleration 

that is self-affecting.  

𝑎 = 𝑓(𝐹𝑛𝑒𝑡) → 𝐹𝑛𝑒𝑡 = 𝑓(𝑊𝑇𝑙𝑜𝑛𝑔) → 𝑊𝑇𝑙𝑜𝑛𝑔 = 𝑓(𝑎) 

For example, let us say that we start accelerating from a standstill. Initially, we assume there is no 

longitudinal weight transfer, so the dynamic normal load distribution is such that both wheels are 

traction-limited. Now, we have the resulting acceleration that we got in Step 1 – Part B. However, now 

that the bicycle is accelerating, there is longitudinal weight transfer. If we go back and recalculate this, 

we find that the new dynamic normal load distribution is such that now the front wheel is traction-

limited and the rear wheel is power-limited due to the additional normal load on the rear wheel. As such, 

if we subsequently recalculate the contact patch forces, the net force on the bicycle will be different than 

our first calculation. So what is actually going on? 

This is a good time to bring up that the model we have made is a quasi-steady state model. This is 

because the weight transfer equations that we are using ignore the transient effects of the 

spring/dampers on the vehicle. As such, in reality weight transfer has a transient component from the 

suspension and does not reach a steady state value instantaneously. Since we are neglecting this, we 

must implement an iterative solver to determine the steady-state weight transfer for each time step. For 

more information on how to implement a simple iterative solver, see Appendix X. 

Using the steady state value of weight transfer at each time step is perfectly fine given our goals for our 

architecture design simulation. While the transient effects of load transfer through a suspension system 

have a massive and very important impact on the real-life handling (and subsequently performance) of a 

vehicle, they do not significantly affect the optimization of the high level parameters we have set out to 

investigate. For a more accurate model of our suspension, we could make a smaller and more specific 

quarter-car model. 

  



Step 3: The Two-Track Model 

Congratulations! We’ve arrived at the part where we begin modeling a four-wheeled vehicle. In this 

section, we will introduce a couple new ideas and turn our acceleration event simulator into an 

autocross event simulator. I recommend saving a copy of the acceleration event simulator at this point 

because it will come in handy later on. 

Lateral weight transfer occurs when a vehicle experiences a centripetal acceleration towards the center 

of a turn. This type of weight transfer can only occur for a vehicle that has two tracks (i.e. not a bicycle). 

This transfer of normal load is also a result of a force being applied to an object at the ground, below its 

CG. By doing a moment balance about one side of the vehicle, this load transfer can be described: 

𝑊𝑇𝑙𝑎𝑡 = 𝑚𝑎𝑙𝑎𝑡 ∗
𝐶𝐺𝑍

(𝑡𝑤)
 

It should be noted that vehicles can have different track widths for the front and rear axles. In that case, 

later weight transfer must be calculated separately for each axle. In our example, we will assume equal 

track widths: 𝑡𝑤 = 𝑡𝑤𝑓 = 𝑡𝑤𝑟 

We will use a simple law of circular motion to calculate lateral acceleration: 

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝑚𝑎𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝑚 ∗
𝑣2

𝑅𝑐
 

𝑎𝑙𝑎𝑡 = 𝑎𝑐 =
𝑣2

𝑅𝑐
 

Tires have what we call a “traction ellipse”. A tire cannot produce its maximum longitudinal and lateral 

forces simultaneously (otherwise it would be referred to as a traction rectangle). Therefore, for a given 

lateral tire force, there is a finite amount of grip remaining for longitudinal force. Race tires usually have 

higher peak lateral capability than peak longitudinal capability. Therefore, we need to be able to 

calculate the available longitudinal force for a given lateral force. In our ellipse calculations, we will refer 

to longitudinal force as 𝐹𝑥 and lateral force as 𝐹𝑦.  

𝐹𝑥
2

𝐹𝑥,max
2 +

𝐹𝑦
2

𝐹𝑦,max 
2 = 1 

 

Additional inputs: 

• Track width (𝑡𝑤) 

• Estimate of maximum lateral coefficient of friction (𝜇𝑙𝑎𝑡) 

• Corner radius: (𝑅𝑐) 

 

[lap simulator introductory guide is unfinished and will 

be expanded upon. To be continued…] 

  



Example Case: WR-217e Architecture 

For the Formula SAE Electric competition, vehicles are restricted to drawing a maximum of 80 kW from 

the tractive battery. This rule is actually very useful in helping constrain our architecture design. First, let 

us run a two-track (four-wheeled) acceleration event simulator given the following constraints:  

1. The FSAE Electric Acceleration Event is 75m long 

2. The maximum usable power is 80 kW 

3. The vehicle cannot propel itself beyond the capabilities of its tires. 

In addition to these three constraints, we will need to determine some initial values for our vehicle 

model. Luckily for us, we have data from our combustion car (cCar) to use as a jumping off point. 

Parameter Variable Value [units] Reasoning 

Total mass of vehicle w/ driver 𝑚 320 [kg] (cCar mass)*1.3 + heavy driver, conservative 

Center of gravity height 𝐶𝐺𝑍 0.25 [m] (cCar CG height)*0.85 

Vehicle wheelbase 𝑤𝑏 1.6 [m] Same as cCar 

Static weight distribution 𝑠𝑤𝑑 0.55 [-] 2% more rearward than cCar 

Estimate of tire rolling radius  𝑟𝑡𝑖𝑟𝑒 0.22 [m] Same as cCar (at std. pressure & load) 

Estimate of maximum longitudinal 
coefficient of friction  

𝜇𝑙𝑜𝑛𝑔 1.4 [-] Correlated to cCar track data 

Estimate of maximum lateral 
coefficient of friction  

𝜇𝑙𝑎𝑡 1.7 [-] Correlated to cCar track data 

Coefficient of downforce 𝐶𝑑𝑓 3 [-] Same as cCar 

Coefficient of drag 𝐶𝑑 1.5 [-] Same as cCar 

Frontal area 𝐴𝑓 1.21 [m2] Same as cCar 

Center of pressure 𝑐𝑝 0.55 [-] Same as cCar 

Air density  𝜌 1.15 [kg/m3] In Lincoln, NE (where comp. is held) 

 

We now have enough information to get this car model rolling! But first, some notes: 

1. We will be using the metric of 0 – 75m time to gauge the vehicle’s performance. 

2. We will keep the aerodynamics package at the standard angle of attack: this is more 

conservative than trimming out wings since our goal is properly sizing our propulsion system. 

This is because the additional downforce will result in more available grip that the propulsion 

system will have to utilize. 

3. When the amount of total available tractive power (∑ 𝐹𝑥,𝑡𝑖𝑟𝑒𝑠 ∗ 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒) exceeds 80 kW, force 

will be removed from each contact patch proportional to where the grip is available. At the 

power limit, force can be removed from the contact patches in any combination- doing so in this 

particular way will ensure that neither the front nor the rear propulsion systems will have to 

work disproportionately hard. This mechanical 80 kW power limit will be an approximation of 

the rules-imposed 80 kW electrical power limit (since we have no way of quantifying electrical 

system losses yet). In the real world, these electrical losses would result in some percentage (80-

95%) of the electrical power to be converted to mechanical power at the wheels of the vehicle. 

  



Accel @ 80 kW Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 1: Acceleration 

This plot is useful mostly for sanity checking the simulation. Initial acceleration appears to be around 

1.3G, which is to be expected with 𝜇 = 1.4 and some tire load sensitivity built into the model. 

Acceleration increases quadratically in the first second or so, which is to be expected due to increasing 

tire capability (as a function of downforce, which itself is a function of 𝑣2). At around 𝑡 = 1.35 𝑠𝑒𝑐, the 

mechanical power limit kicks in and acceleration starts to fall off. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 2: Total Mechanical Power 

This plot is also mostly useful for sanity checking the simulation. Power starts at zero (which makes 

sense given 𝑣 = 0), and increases slightly more than linearly (which makes sense given slightly 

increasing available traction due to downforce), and saturates at 𝑃𝑚𝑒𝑐ℎ = 80 [𝑘𝑊] as expected. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 3: Individual Tire Powers 

This plot gives us a good idea of the peak motor power our propulsion system should be capable of 

producing for both the front and rear wheels. From the plots, we can generally say: 

𝑃𝑝𝑒𝑎𝑘,𝐹 = 18 [𝑘𝑊] 

𝑃𝑝𝑒𝑎𝑘,𝑅 = 28 [𝑘𝑊] 

This is true if each wheel is individually driven by a motor. If, for example, one wanted to implement a 

single inboard rear motor, the peak power requirement would be 2 ∗ 𝑃𝑝𝑒𝑎𝑘,𝑅. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 4: Individual Tire Torques 

This plot gives us a good idea of the peak tire torque (post-transmission) our propulsion system should 

be capable of achieving for both the front and rear wheels. From the plots, we can generally say: 

𝑇𝑝𝑒𝑎𝑘,𝐹 = 150 [𝑁𝑚] 

𝑇𝑝𝑒𝑎𝑘,𝑅 = 360 [𝑁𝑚] 

This is true if each wheel is individually driven by a motor. If, for example, one wanted to implement a 

single inboard rear motor, the peak torque requirement would be 2 ∗ 𝑇𝑝𝑒𝑎𝑘,𝑅. 

 

 

 

 



 

 

Plot 5: Torque-Speed Curves 

This plot gives us an idea of the torque-speed relationship we want for our electric motors. 

  



Justifying All-Wheel Drive Architecture 

The heaviest component in an electric vehicle is the high voltage tractive battery. As such, the electric 

motors and inverters account for a significantly smaller portion of the vehicle mass. Upon inspecting the 

above plots, it is clear that having tractive force at the front tires (contact patches) is preferable from an 

architecture standpoint, as it allows for ~30% higher longitudinal acceleration capability for a small 

increase in mass. We can ground this idea in first principles: 

𝐹 = 𝑚𝑎 

In a simplified sense, as long as the addition of a front wheel propulsion system increases the 

accelerating force on the vehicle 𝐹 more than it increases 𝑚, the net effect will be positive on 

longitudinal vehicle performance. 

 

Electric Motor Selection 

In addition to hitting our peak torque and power specifications, the shape of the torque-speed curve is 

important in the motor selection process. The general shape of the desired torque curves for our motors 

include a relatively flat peak torque region followed by a downward sloping relatively constant power 

region (due to the nature of the overall power limit on the car). Motors that have this characteristic 

have what is called flux-weakening capability. Ideally, we would like motors with this capability. 

That being said, there are many other factors that can influence the selection of a propulsion system, 

chiefly packaging constraints and other electrical rules (such as maximum tractive voltage). During our 

selection process we must meet a series of requirements before even considering performance targets. 

1) Motors and motor controllers must obey all FSAE rules including tractive voltage limit. 

2) Motors, motor controllers, and required transmissions must be able to package inside the 

geometric constraints of the vehicle. 

3) Motors and motor controllers must have a lead time that is compatible with the project 

timeline. 

4) Motors and motor controllers must be affordable by the team. 

If a propulsion system meets all of these requirements, we can move onto achieving performance 

targets, such as peak power, peak torque, and torque curve shape. 

  



Case Study: WR-217e Motor Selection 

Plettenberg Nova 15 Specifications (Front in-hub motors): 

• Peak torque: 28 [Nm] 

• Peak power: 20 [kW] 

• Linear peak power curve, constant peak torque curve (no flux-weakening) 

• Required gear reduction to achieve target tire torque: 5.3:1 

• Mass: 3 [kg] 

• Water jacket 

Plettenberg Nova 30 Specifications (Rear inboard motors): 

• Peak torque: 61 [Nm] 

• Peak power: 30 [kW] 

• Linear peak power curve, constant peak torque curve (no flux-weakening) 

• Required gear reduction to achieve target tire torque: 5.9:1 

• Mass: 6 [kg] 

• Water jacket 

 

Parameter Optimization 

No matter what range of values are swept for vehicle mass, acceleration event time will be minimized as 

mass gets smaller. On the other hand, the gear reduction ratio from a motor shaft to the tire will have a 

global minimum in acceleration time. This is because as gear reduction increases, the top speed of the 

vehicle decreases, and as gear reduction decreases, peak acceleration decreases. Because high 

acceleration and high top speed are both desirable, there is a tradeoff involved in determining the 

optimal gear ratio. Vehicle mass and gear reduction are examples of two kinds of parameters-

parameters that produce a global extrema of the output metric at some value within their defined 

domain, and parameters that do so at a boundary of the domain. It is useful to sweep both types of 

parameters around a nominal value in order to determine the sensitivity of acceleration event time to 

that parameter. For example, by sweeping vehicle mass -20 kg to + 20 kg of the nominal value, we can 

determine the change in acceleration event time per unit mass (
𝑑𝑡

𝑑𝑚
). Besides sensitivity analysis, 

parameters with corner solutions are less interesting from an architecture optimization standpoint.  

Gear Ratio Optimization 

Now that we have selected the electric motors for our case study, we must determine the optimal gear 

ratios to minimize acceleration event time. Previous lap time simulations have shown that optimizing 

gear ratios for an acceleration event are sufficient for optimal performance in autocross events as well. 

We will use an acceleration event due to less computational overhead. 

It should be noted that the optimal gear ratios are not necessarily just the ratio required to achieve the 

target peak tire torque. This is because that particular ratio may reduce the top speed of the car in such 

a way that the overall acceleration event time goes up as a result.  

 



 

First, we will sweep the rear gear ratio. It is imperative that we perform this analysis for varying 

coefficients of friction- it is obvious from the result that the coefficient of friction changes the optimal 

ratio drastically. This is because at low coefficients of friction, the car’s ability to accelerate is limited by 

traction and the fastest acceleration event time will be achieved by increasing top speed (lower gear 

ratio). On the other hand, at higher coefficients of friction the car has more grip it can utilize so the 

optimal gear ratio will trend higher. As the coefficient of friction increases, the optimal ratio shifts from 

3.5:1 to 4.5:1.  Since higher coefficients of friction better represent the track surface at competition in 

Lincoln, NE, a rear gear ratio of 4.5:1 was selected. 

 

 

 

 

 

 

 

 



 

Next, we sweep the front gear ratio. This plot looks different from the previous plot due to the fact that 

the front motors are significantly traction limited. Therefore, in the range of 6:1 to 9.5:1, lap time 

simulation shows that there is no significant difference in performance. For a given output torque, the 

motor itself will be more efficient with a higher gear ratio (since more torque is a result of the speed 

reduction instead of phase current). That being said, packaging constraints limit our gear reduction to a 

maximum of 6:1 in a single stage planetary gear set. Since packaging constraints must take priority (and 

a compound gear reduction is a challenge to be tackled in a future year), a 6:1 reduction was selected. 

 

  



 

Accumulator Energy Determination 

Next, a full endurance lap simulator is utilized in order to determine the required accumulator energy to 

finish our 22 km race. Using some relatively basic loss models for the electric motors/motor controllers 

and the battery, we can include the effect of electrical losses in our analysis.  

The electric motors have losses that are loosely categorized as torque-based losses (joule losses, I2R) and 

speed-based losses (hysteresis losses, eddy current losses). Torque-based losses are easily accounted 

for, and a linear speed-based loss model was developed for the motors in absence of dyno data. 

𝐿𝑜𝑠𝑠𝑚𝑜𝑡𝑜𝑟 = 𝐼𝑝ℎ𝑎𝑠𝑒
2 ∗ 𝑅𝑝ℎ𝑎𝑠𝑒 + 𝑉𝑏𝑎𝑐𝑘𝐸𝑀𝐹 ∗ 𝐼𝑜 (𝑤ℎ𝑒𝑟𝑒 𝐼𝑜 = 𝑛𝑜 𝑙𝑜𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

The battery losses are tracked based on the battery’s internal resistance. The losses from the battery are 

both electrical and chemical in nature, but can be roughly modeled as joule losses based on  

𝐿𝑜𝑠𝑠𝑎𝑐𝑐[𝑊] = 𝐼𝑎𝑐𝑐,𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠
2 ∗ 𝑅𝑎𝑐𝑐,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 

The tricky part of this is that the accumulator losses depend on the resistance of the accumulator, which 

depends on the number of cells in the accumulator. Since we are trying to determine the number of 

cells to implement, an educated guess for accumulator resistance must be made at the beginning of 

optimization. 

One tool we will be implementing in this analysis is the idea of a software power limit. By rules, the 

vehicle may not draw more than 80 [kW] from the accumulator. It is, however, within the ability of the 

team to voluntarily lower the power limit on the vehicle in the control software. This has the potential 

to significantly decrease energy consumption due to the fact that losses go up quadratically (or more!) 

at higher power draws. A sweep of software power limit vs. endurance lap time and energy 

consumption was performed. 

  



 

 

It can be seen from this sweep that as the power limit is reduced from 80 [kW] to 40 [kW], lap time 

increases from 80 [sec] to 82 [sec], or a 2.5% increase. At the same time, energy consumption goes from 

8.1 [kWh] to 6.5 [kWh], or a 20% decrease! For the endurance event where the main goal is to finish at 

all, this tradeoff between performance and probability of event completion is well worth it. From the 

plot above, it can be seen that the lap time and energy consumption curves begin to change slope 

significantly below 40 [kW], and so the endurance software power limit we selected was 40 [kW]. At this 

power level, the required energy is 6.5 [kWh]. Our next question becomes: why is there such a large 

drop in energy consumption between 80 [kW] and 40 [kW]? 

For this, we will have to dig a bit deeper into the simulation to determine where the energy is going. 

Simulation shows that the majority of accumulator losses occur in straightaways at peak accumulator 

power draw.  

 



The above plot was generated from an acceleration event. From t = 0 to t = 1.6, power increases more 

or less linearly as the car accelerates at a relatively constant rate. From t = 1.6 to t = 2.1, the power 

limiter saturates the usable electrical power at 80 [kW]. After t = 2.1, the car approaches top speed and 

power decreases once more. The purple line represents the amount of power produced by the cells in 

the accumulator, which is a combination of the usable electrical power measured by the energy meter 

and the power lost to heat. It can be seen that the purple line diverges quickly from the blue (usable 

electrical power at the battery terminals) line when the usable electrical power exceeds 40 [kW]. The 

delta between the purple and blue lines is the amount of power lost to heat in the battery, and at peak 

power the battery is ~80% efficient with losses close to 20 [kW]. The delta between the blue and yellow 

lines is the power lost to electrical losses in the motors/motor controllers. The yellow line is the 

mechanical power produced by the vehicle. The delta between the yellow and red lines is the power lost 

to drag. The takeaways from this plot are a) the battery is very inefficient at high powers (in upcoming 

years it would be worth developing a lower internal resistance battery), and b) the aggressive 

aerodynamics package requires a significant amount of power to overcome drag at high speeds, in 

excess of 10 [kW], indicating it would be worth designing an active aerodynamic drag reduction system 

in future years. This is especially true given that the energy density of a lithium battery is an order of 

magnitude worse than that of a chemical racing fuel, and as a result the weight savings achievable by 

implementing a smaller battery due to the reduction in energy consumption could be substantial. 



Optimal Split: Maximizing Efficiency 

You may have noticed the delta between the blue and yellow lines decreasing as time progresses at the 

80 [kW] power limit. This is because the simulation employs an optimal splitting strategy once the 

electrical power limit is engaged in order to maximize the amount of those 80 [kW] being converted into 

mechanical power (or, alternatively, minimize the amount of electrical losses). This is accomplished by 

minimizing the torque-based joule losses in the system. Because the front motors are different than the 

rears, the [W] of loss per [N] at the contact patch is different for each motor.  

𝑃𝑒𝑙𝑒𝑐,𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝐹𝑐𝑝 ∗ 𝑣 + ∑(𝑗𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠) + ∑(𝑠𝑝𝑒𝑒𝑑 𝑙𝑜𝑠𝑠𝑒𝑠) 

At the electrical power limit, the total electrical power is a constant, and the control system has no way 

of directly controlling the speed-based losses. Therefore, we focus on the joule losses. We want to find a 

way to split the tractive force between the front motors and rear motors to minimize these losses. 

𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠 = 2(𝐼2𝑅)𝑓𝑟𝑜𝑛𝑡 + 2(𝐼2𝑅)𝑟𝑒𝑎𝑟 

We will now rewrite the joule losses equation in terms of contact patch forces. 

𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠 = 2 (
𝑟𝑡𝑖𝑟𝑒 ∗ 𝐹𝑐𝑝,𝑓𝑟𝑜𝑛𝑡

𝑁𝑓𝑟𝑜𝑛𝑡 ∗ 𝐾𝑡,𝑓𝑟𝑜𝑛𝑡
)

2

∗ Ω𝑓𝑟𝑜𝑛𝑡 + 2 (
𝑟𝑡𝑖𝑟𝑒 ∗ 𝐹𝑐𝑝,𝑟𝑒𝑎𝑟

𝑁𝑟𝑒𝑎𝑟 ∗ 𝐾𝑡,𝑟𝑒𝑎𝑟
)

2

∗ Ω𝑟𝑒𝑎𝑟   

where 𝐾𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛
𝑁𝑚

𝐴
 

Note that the dimension of the product inside the parentheses is equal to amps. To find where losses 

are minimized, we want to take the partial derivative of losses with respect to front contact patch force 

and rear contact patch force, and set both of them equal to zero. Since both are set equal to zero, we 

can set the partial derivatives equal to each other and solve for a force ratio. 

𝐹𝑐𝑝,𝑓𝑟𝑜𝑛𝑡

𝐹𝑐𝑝,𝑟𝑒𝑎𝑟
=

(
1

𝑁𝑟𝑒𝑎𝑟 ∗ 𝐾𝑡,𝑟𝑒𝑎𝑟
)

2

∗ Ω𝑟𝑒𝑎𝑟

(
1

𝑁𝑓𝑟𝑜𝑛𝑡 ∗ 𝐾𝑡,𝑓𝑟𝑜𝑛𝑡
)

2

∗ Ω𝑓𝑟𝑜𝑛𝑡

  

A quick sanity check is to think about what would happen if the front motors and rear motors were the 

same. If this were the case, the optimal force ratio would be 1, or 50% of the force in the front and 50% 

of the force in the rear. This makes sense because it would be less efficient to have either the fronts or 

the rears do the majority of the work. In the case of our electric racecar, optimal split is around 25% 

front. This also intuitively makes sense- a smaller motor will be less efficient at producing a force at the 

contact patch than a larger one. 

  



 

The above plot is one way to visualize optimal split. The contours are constant loss lines. It can be seen 

that for constant losses, one can achieve higher total powertrain force by using a split of around 25% 

front. This is why all of the contours have a peak around that percentage. The peak in the middle is a 

result of the diminishing number of ways you can split tractive force as it increases. At the extreme, 

around 3600 [N], there is only one way to split the force: around 45% front. There is only one solution 

because this is the point where all motors are producing peak torque simultaneously. The lower the 

total powertrain force is, the more flexibility the control system has in terms of splitting it up. 

 

 

  



 

This is a different way to visualize optimal split. For a given amount of tractive force requested by the 

driver, there is a finite power savings between the most and least optimal split percentages. Again, as 

force approaches 3600 [N], the number of split possibilities approaches zero and therefore the power 

savings between the best and worst split percentage also approaches zero. Around 1500 [N], the 

maximum power savings are possible, with a delta of over 5.5 [kW]!  

Note: the jagged line is just an artifact of numerical calculation error. The true curve is smooth except 

for the peak. 

 

  



Sensitivity Report 

Variable Nominal Value Delta Delta Accel Time (ms) Sensitivity Sensitivity Units 

𝑚 320 [kg] -20 [kg] -45.4 2.3 [ms/kg] 

𝜇𝑙𝑜𝑛𝑔 1.4 [-] +0.1 [-] -18.7 -186.5 [ms] 

𝐶𝐺𝑧 25 [cm] -1 [cm] -6.8 6.8 [ms/cm] 

𝑤𝑏 160 [cm] +10 [cm] -9.9 -9.9 [ms/cm] 

𝑠𝑤𝑑 55 [%] -5 [%] -41.0 8.2 [ms/%] 

𝑟𝑡𝑖𝑟𝑒 22 [cm] +1 [cm] -35.2 -35.2 [ms/cm] 

𝐶𝑑𝑓 3 [-] +0.1 [-] -0.5 -5.5 [ms] 

𝐶𝑑 1.5 [-] -0.1 [-] -2.7 27.0 [ms] 

𝐴𝑓 1.21 [m2] -0.1 [m2] -1.9 19.2 [ms/m2] 

𝑐𝑝 55 [%] -5 [%] -2.1 4.2 [ms/%] 

Ω𝑐𝑒𝑙𝑙 23 [mOhm] -5 [mOhm] -35.8 7.2 [ms/mOhm] 

𝑁𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 30 [cells] +1 [cell] -50.2 -50.2 [ms/cell] 

𝑁𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 24 [cells] +1 [cell] -6.8 -6.8 [ms/cell] 

𝐾𝑡,𝑓𝑟𝑜𝑛𝑡 0.1 [N-m/A] -0.01 [N-m/A] -6.6 662.9 [ms/(N-m/A)] 

𝐾𝑡,𝑟𝑒𝑎𝑟  0.217 [N-m/A] -0.02 [N-m/A] -56.8 2840.8 [ms/(N-m/A)] 

𝑇𝑚𝑎𝑥,𝑓𝑟𝑜𝑛𝑡 28 [N-m] +1 [N-m] 4.6 4.6 [ms/N-m] 

𝑇𝑚𝑎𝑥,𝑟𝑒𝑎𝑟 61 [N-m] +2 [N-m] -20.7 -2.1 [ms/N-m] 

𝑁𝑓𝑟𝑜𝑛𝑡 6 [-] +0.5 [-] 10.6 21.2 [ms] 

𝑁𝑟𝑒𝑎𝑟  4.5 [-] -0.5 [-] -61.9 123.8 [ms] 

 

*highlighted in green are the areas in which the architecture has significant room for improvement. The 

car could and should certainly be lighter. The static weight distribution should be closer to 50/50 in order 

to better utilize the front powertrain. The rolling radius of the tire should be carefully identified in order 

to ensure it is correct due to the high sensitivity of the accel event to it. Lower internal resistance cells 

should be investigated in order to reduce losses at the power limit (and maximize mechanical power). A 

higher voltage should be investigated, in this case in order to increase the top speed of the car. The rear 

motors should either have a slightly lower gear ratio or lower Kt, as the rear motors are the limiting 

factor for the top speed of the car, and a slightly higher top speed would further reduce accel times. 

  



Overall Architecture Comparison 

To wrap up, we should evaluate the architecture we settled on. We will benchmark our architecture in 

an acceleration event against: a) riding the traction limit to 75 m, b) riding the traction limit and then 

limiting to 80 kW mechanical, c) one of our competitor’s architecture, and d) Wisconsin Racing’s own 

combustion car. 

For these simulations, our architecture will be benchmarked against a vehicle of the same mass for a) 

and b), and will use real car parameters for c) and d). 

 

 

 

 

 

 

 

 



 



 

 

Takeaways:  

1) Delta between yellow and red is our room to improve in terms of powertrain architecture alone 

(chassis mass would shift blue, red, and yellow leftwards). 

2) 217e succeeds at besting competitor UPenn Electric, whose car is significantly lighter but RWD 

only. 

3) Wisconsin Racing’s first ever electric car should be the quickest vehicle ever made by the 

university! 

 

 

 

 

 

 

 



Model Validation: Reality vs. Expectation and Model Correction 

After dyno testing electric motors and motor controllers, we learned: 

• Motor controller maximum continuous phase current: 200 A reality vs. 280 A expectation 

• Rear motor torque constant: 0.175 Nm/A reality vs. 0.217 Nm/A expectation 

• Transmission losses greater than expected: 15% reality vs. 5% expectation 

• No regeneration capability from powertrain 

Effects on the vehicle: 

• Accel times increased by 40% 

• Peak tire torque decreased by 50% 

• Autocross times increased by 5% 

• Peak electrical power draw from battery decreased by 20% during accel and autocross (80 kW -> 

65 kW) 

• Endurance energy consumption had negligible change 

▪ 40 kW software power limit was selected for endurance to balance tradeoff of energy 

consumption and laptime. This limiter remains the dominating factor in endurance energy 

consumption- even with the loss in performance from expectation vs. reality, average 

accumulator power draw during endurance was mostly unaffected 

▪ Accumulator energy was designed for the contingency that regen would be nonfunctional. 

As such, the car still would have been able to finish an endurance. 

Processing track data: Twenty laps processed, dashed line is the mean lap velocity 



Statistical analysis:  

 

• Orange line is mean lap velocity from track data 

• Blue region is the result of statistical analysis 

• Dashed line is the LapSim velocity after tuning the model to track data 

 

 

 

 

 

 

 

 

 



Lost Torque from Original Design Intent: 
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Takeaways: 

1) Be very skeptical of “peak” specifications. Peak can mean anything from “maximum continuous 

capability” to “highest possible value for 1 ms before damage”. Be fastidious and insistent- press 

the manufacturer to be as clear as possible about their peak specifications. You should always 

be able to make a plot of “pulse performance” vs. “pulse time” 

a. For example, a battery or inverter could supply 250 A for 1 sec, 200 A for 20 sec, 150 A 

for 20 min, and 100 A continuously, etc 

2) Always ensure the correct safety measures are implemented- either by yourself or by the 

manufacturer. Lack of standard safety mechanisms such as overcurrent protection, overvoltage 

protection, reverse voltage protection, etc should be a red flag that the product has corners 

being cut. This is important to ensure the safety of your team members, but also important to 

ensure that in a fault condition your hardware does not become damaged. 

3) If no data is available, be conservative in modeling loss mechanisms such that powertrain 

performance has a reasonable factor of safety (ie motor losses, inverter losses, transmission 

losses). 

4) Take the “make vs. buy” decisions very seriously. We’re here to learn, and sometimes the best 

way to do that is to make things yourself. Get out there and push yourself to design new things 

and learn new concepts! 
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